CBCS SCHEME

USN 15EC36

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. State and explain Coulomb's law.

(04 Marks)

- b. A charge $Q_A = -20 \mu c$ is located $A(-6, 4, 7)_m$ and $Q_B = 50 \mu c$ at $B(5, 8, -2)_m$ in free space. Find the force exerted on Q_A by Q_B ? (05 Marks)
- c. Define electric field intensity and electric flux density.

(03 Marks)

d. Calculate the total charge within the volume

$$0 \leq \rho \leq 0.1$$
 , $0 \leq \varphi \leq \pi$, $2 \leq z \leq 4$, $\rho_v = \rho^2 z^2 \sin \! 0.6 \varphi$

(04 Marks)

OR

2 a. Obtain an expression for electric field due to infinite line charge.

(06 Marks)

- b. A charge of $-0.3\mu c$ is located at A(-25, 30, 15)cm and a second charge of 0.5 μc is at B(-10, 8, 12)cm. Find E at the origin. (06 Marks)
- c. A uniform line charge of 2 μ c/m is located on the z-axis. Find E in rectangular coordinates at P(1, 2, 3) if the charge exists from $-\infty < z < \infty$. (04 Marks)

Module-2

3 a. State and prove Gauss law and derive first Maxwell's equations from it.

(05 Marks)

- b. Given a 60 μc point charge located at the origin. Find the total electric flux passing through the closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm. (04 Marks)
- c. State and prove the Divergence theorem.

(05 Marks)

d. Given the electric flux density $D = 0.3r^2 \hat{a}_r$ nc/m² in free space. Find E at the point $P(r = 2, \theta = 25^{\circ}, \phi = 90^{\circ})$. (02 Marks)

OR

4 a. Prove that the work done in moving a charge in the electric field is

 $W = -O \int_{0}^{\text{final}} E dI$

(06 Marks)

- b. Calculate the work done in moving a 4C charge from B(1, 0, 0) to A(0, 2, 0) along the path y = 2 2x, $\tau = 0$ in the field $E = (5x a_x + 5y a_y) V/m$. (05 Marks)
- c. Show that $\nabla \cdot J = -\frac{\partial \rho_v}{\partial t}$ with usual notations.

(05 Marks)

Module-3

5 a. Starting from Gauss law, derive Poisson's and Laplace's equations.

(04 Marks)

b. Calculate ρ_v at point P in free space, if $V = 5\rho^2 \cos 2\phi$ at P(3, $\pi/3$, 2) c. State uniqueness theorem.

(06 Marks) (02 Marks)

d. By using Laplace's equation, derive an expression for the capacitance of a parallel plate capacitor. (04 Marks)

State and explain Biot-Savart's law.

(04 Marks)

- By using Ampere's law, derive an expression for H, magnetic field intensity due to a coaxial cable.
- c. Evaluate both sides of Stokes theorem for the field, $H = (6ay\hat{a}_x 3y^2a_y)$ A/m and the $-1 \le y \le 1$, z = 0. Let the positive direction rectangular path around the region $2 \le x \le 5$ (06 Marks) of ds be az.

Module-4

- The field B = $(-2a_x + 3a_y + 4\hat{a}_z)$ mT is present in free space. Find the vector force exerted on a straight wire carrying a current of 12A in the aAB direction. Given A(1, 1, 1,) and (04 Marks) B(2, 1, 1).
 - b. Two differential current elements, $I_1\Delta L_1 = 3\times 10^{-6}$ A-m at $P_1(1, 0, 0)$ $I_2\Delta L_2 = 3 \times 10^{-6} \left(-0.5\hat{a}_x + 0.4\hat{a}_y + 0.3\hat{a}_z \right) A$ -m at $P_2(2, 2, 2)$ are located in free space. Find (06 Marks) the vector force exerted on $I_2\Delta L_2$ by $I_1\Delta L_1$.
 - c. Find the magnetization in a magnetic material where
 - $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m
 - (ii) $\mu_r = 22$, there are 8.3×10^{22} atoms/m and each atom has a dipole moment of $4.5 \times 10^{-27} \text{ A/m}^2$.
 - (iii) $B = 300 \mu T \times \chi_m = 15$.

(06 Marks)

Derive the Magnetic Boundary Condition?

(06 Marks)

- Let the permittivity is 5 μ H/m in the region 1 where x < 0 and 20 μ H/m in the region 2 where x > 0, and if $H = (300a_x - 400a_y + 500\hat{a}_z) A/m$ and if there is a surface current density $K = (150\hat{a}_y - 200\hat{a}_z) A/m$ at x = 0.
 - Find (i) $|H_{t_1}$ (ii) $|H_{N_1}|$ (iii) $|H_{t_2}|$

(06 Marks)

c. Derive the expression for the energy density in a magnetic field?

(04 Marks)

Module-5

- State Faraday's laws of electromagnetic induction. Further derive Maxwell's equation 9 from it.
 - b. Find the amplitude of the displacement current density due to an automobile antenna where the magnetic field intensity of an FM signal is $H_x = 0.15 \cos[3.12(3 \times 10^8 t - y)]$ A/m.

(06 Marks)

State Maxwell's equation in both Point form and in Integral form.

(06 Marks)

OR

Derive the wave equation in one dimension for an EM wave travelling in free space. 10

- b. The electric field amplitude of the uniform plane wave in the az direction is 250 V/m. If $E = E_x a_x$ and $\omega = 1.00$ Mrad/s, find (i) the frequency (ii) the wavelength (ifi) the period (04 Marks) (iv) the amplitude of H.
- c. State and prove Poynting's theorem.

(06 Marks)

